A Memory and Search Hybrid Genetic
Algorithm for non-Stationary Environments
with Repetitive Natures

David B. Bracewell and Fuji REN

Department of Information Science and Intelligent Systems
University of Tokushima
Minami-Josanjima-Cho Tokushima-shi 770, JAPAN
email: {davidb, ren}@is.tokushima-u.ac.jp

Abstract. We look at combining a search-based and memory-based
approach creating a hybrid GA to solve problems with non-stationary
environments. In particular, the memory search hybrid GA (MSHGA)
we present is well suited to deal with non-stationary environments that
are repetitive in nature, i.e. different problem landscapes are repeatedly
seen. The MSHGA is capable of recalling candidate solutions for pre-
viously seen problem landscapes. This ability coupled with the search
based technique of random immigrants causes the MSHGA to outper-
form the SGA and random immigrants GA in our experiments.

Keywords
Soft Computing, Evolutionary Computation, Genetic Algorithms, Non-Stationary

Environments

1 Introduction

The genetic algorithm has been widely used for many problems that have sta-
tionary environments. With its population of candidate solutions it should also
provide a good mechanism for solving problems having non-stationary environ-
ments. Recently, there has been much work on adapting the genetic algorithm to
deal with non-stationary environments. Out of this research two main approaches
have emerged, the search-based approach and the memory-based approach [10].
Diversity in a population is what secures its survival in changing environ-
ments. The strong selection pressure of the simple genetic algorithm (SGA)
quickly eliminates diversity in the population. The search-based approach at-
tempts to keep some level of diversity in the population. This added diversity
helps the GA to cope with the changes in environment. There have been many
studies on ways of keeping the population diverse. Cobb introduced the idea of
triggered hypermutation that is activated when a degradation of fitness is mon-
itored for the best candidates in the population [2]. Grefenstette introduced the
idea of random immigrants that uses a partial hypermutation to replace a per-
centage of the population determined by the replacement rate [8]. Ghosh et al.

© A. Gelbukh, C. Ydiiez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 35-46

36 Bracewell D., Ren F.

use aging of individuals that limits the dominance one individual can have over
the population [6]. Cobb and Grefenstette did a comparison between the SGA,
random immigrant GA, and GA with hypermutation. They found that diversity
“represents a natural source of power in adapting to changing environments” [3].
The memory-based approach extends the memory of the GA to learn previous
adaptations. Perhaps the most well known is diploidy and dominance maps,
introduced by Goldberg and Smith [7]. They showed that this technique worked
in certain non-stationary environments, notably ones having only two optima.
However, this technique does not seem to scale up to the more general case.
Kita and Sano proposed a memory-based fitness approach, which stores sample
fitness values in memory for estimation of fitness values of points of interest
[9]. While it looks promising only an outline of how to use it for non-stationary
environments was given as the main focus was on noisy fitness functions.

In this paper we look at combining both the scarch-based and the memory-
based technique to create a hybrid GA to deal with non-stationary environments.
The Memory Search Hybrid GA (MSHGA) we will present is particularly well
suited for environments that are repetitive in nature. This means the different
problem landscapes brought about by the changes in environment are repeatedly
seen. One can very well imagine a situation in which the variables for a problem
are continuously changing and that the same variable values are secen over and
over again. An example would be optimizing the temperature of a room where
the variables would be outside weather conditions. This is the type of problem
that the MSHGA is designed for and excels at. Typical techniques for non-
stationary environments, especially search-based techniques, do not show this
characteristic.

The ability to recall candidate solutions to previous variations of a problem
also leads us in the direction of creating a GA that is capable of dealing with
any possible instance of a problem. Imagine a GA that is always processing
and different instances of a problem are continuously fed to it. Because of the
memory if any instance has been seen before we can either not process and give
the answer we have or continue to process from that point hoping to refine the

answer even further. In a sense the MSHGA becomes an expert system that is
capable of handling any instance of a certain problem.

The paper will proceed as follows, in section 2 the MSHGA will be explained.

In section 3, we will present the experiments we performed and their results.

Finally, in section 4 we will conclude the paper with some final thoughts and
considerations for future work.

2 The Memory Search Hybrid GA

The MSHGA is ade up of a generational GA (5] with 3 added parts, as seen
in figure 1. Elitism allows the MSHGA to always refine solutions. It keeps the
most fit individual always in the population. The search technique keeps diver-
sity in the population allowing for a better chance of finding a good solution

A Memory and Search Hybrid Genetic Algorithm

to an unseen problem landscape. The candidate population kecps track of the
environments and their best answer seen so far.

')
..(Elitism]
Generational
GA ..{ Search Technique J
J.[Candidate Population]

- e e e e e s e e e s e s A SR R R e e e m

P I I
- e e e e e o e e

Fig.1. MSHGA Diagram

The search-based techniques do well in keeping the population diverse. The
added diversity allows the GA to keep a variety of building blocks available.
However, a search-based technique has no way of remembering the candidate
solutions for the different optima caused by the non-stationary environment. In
order to handle this we need to add a memory that is specifically for the different
optima. The MSHGA has an extra storage area, which is called the candidate
population. The size of the candidate population is dependent on the number
of changes that will take place in the environment. Each problem landscape,
brought about by a change in environment, will have an individual in the candi-
date population. The individual can be simply a copy of the best fit candidate
solution that has been seen for that problem landscape so far and its fitness.
The size of the of the candidate population can be dynamic or fixed. If memory
is at a premium then a fixed candidate population can be used. Using a fixed
candidate population does require some mechanism for retiring candidate solu-
tions from the population to make room for new ones. Since typically problems
call for population sizes in the hundreds the memory necded for the candidate
population will generally be much smaller. In our current implementation we use

a dynamically sized candidate population.
The search-based technique and the underlying generational GA can be cho-

sen to suite the needs of a particular problem. The MSHGA we designed for our
experiments used random immigrants as the search technique and used a SGA
base. For certain problems a non-fixed length encoding, dynamic population size,
etc. may be uscful.

As figure 2 shows, the MSHGA works like any other generational GA. For
more information on the generational GA please see [5]. The main difference
is that it necds some way of detecting a change in environment. This can be

38 Bracewell D., Ren F.

achieved in a variety of ways. One such way is to keep track of the parameters
for each problem landscape and link those parameters to an individual in the
candidate population. This technique has the added benefit that at the end of
the run each problem landscape can be shown with its corresponding answer a.nd
set of parameters. Of course, this technique does have the downside of requirm-g
more memory. We chose to use this approach for our experimentations. This
method checks current conditions to determine if the environment has changcc!.
an example would be checking the temperature and determining if the envi-
ronment has changed based on the difference between the current and previous
temperatures. A second approach, which works well with permutation problems,
is to modify the fitness function so that no individual can have the same ﬁtne.ss
in different problem landscapes. In most cases, using this method will require
encoding parameter information into the fitness of the individual. Both methods
were tested for validity and the performance was the same.

Before the start of the MSHGA the population is initialized. As with the SGA
this can be done randomly or using some heuristics about the problem. At the
beginning of each generation a check is made to determine if the environment
has changed. If it has then we first save the current best individual into. t-:he
candidate population associating it with the environment is was in (overwriting
any older saved individuals). We then, look into the candidate population 'to
see if there is a candidate solution for the new problem landscape. If there 1s,
we retrieve it and replace the least fit individual in the population with it.
The MSHGA then goes on normally, performing sclection, recombination, and
mutation. Any sclection, crossover, or mutation function can be used. At the

end of each generation random immigrants are introduced into the population.

Finally, the best fit individual from the previous generation is copied into the
new child population replacing the least fit child.

Initialize Population
while(not done) do

If Enviroment has changed Then
Store best individual

Retrieve the new environment’s best individual
End
Selection
Crossover
Mutation
Random Immigrants

If Enviroment has NOT changed Then
Elitism
End
End

Fig. 2. MSHGA Pseudocode

A Memory and Search Hybrid Genetic Algorithm 39

3 Experimentation

For experimentation we looked at two problems: x-max and the non-stationary
knapsack problem. In each problem we compared the performance of the MSHGA
to that of the SGA and the RIGA (random immigrants GA). Two tests were ran
for each problem. In the first test, the parameters are changed on a schedule of
every 50 generations. In the second test, we looked at having a random change in
parameters. In this test each generation had a 15% chance that the parameters
would be changed. In both experiments the RIGA and MSHGA used a rcplace-
ment rate of 10%. The SGA and RIGA were augmented with elitism to keep
them comparable to the MSHGA. In addition, each GA for each problem was
run for 100 runs and the results shown are the average best fitness per generation

over those 100 runs.

3.1 The X-Max Problem

The one-max problem is often introduced when learning about genetic algo-
rithms, because it is easy to understand and to implement. The goal is to maxi-
mize the number of ones in a bit string. The x-max problem is the non-stationary
version of the one-max problem. In the x-max problem the goal is to maximize
the number of z in the bit string, where the value of z changes over time. In the
version of x-max that we chose, the z value can range from 0 to 9. We chose
a bit string size of 100. Thus, the maximum fitness value is 100 and is reached
when the bit string has all 100 bits set to z.

For mutation we randomly chose a number from 0 to 9. The mutation rate
was 0.005. For crossover we used uniform crossover with a crossover rate of 0.8.
We used tournament sclection with a tournament size of 2 and an 80% chance
the individual with the higher fitness would be chosen. The population size was
100 and one run was for 4000 generations. This allowed for each of the z values
to be seen 8 times on the scheduled change test. The MSHGA parameters were
chosen by experimentation, where we tried to optimize the SGA for the 1-max
problem.

In figures 3, 4, and 5 we can sce the results for the SGA, RIGA, and MSHGA
when there is a scheduled change in the value of z. We can see that the SGA and
RIGA have to kecp rcbuilding their solutions each time the value of z changes.
This extra effort causes the SGA and RIGA to spend so much of its time trying
to rebuild good solutions that is never able to improve on them. This wasted
effort is avoided by the MSHGA due to its ability to use its memory to retrieve
the previous best candidate solution for an z value it has seen before. If we were
to expand the number of gencrations we would expect to sce that the SGA and
RIGA would continue to hover around 60 and 80 respectively while the MSHGA
would continue to improve upon its solutions.

In figure 6, we can scc the results for the SGA, RIGA, and MSHGA when
there is a random change in the value of z. The graph depicts how well each
type of GA is able to cope with a rapidly changing environment. As with the
scheduled change we can see that the SGA and RIGA are both stagnant in their

40 Bracewell D., Ren F.

1ee T T T L T T L
sm-..-_--—

Fitness

@ 580 1608 15ee 2088 2500 seee 3500 4000
Generation

Fig. 3. Scheduled Change of X Value (SGA)

108

§ JWEJ H} AT
= A
| R %;i‘

Generation

Fig. 4. Scheduled Change of X Value (RIGA)

Fitness

Fitness

A Memory and Search Hybrid Genetic Algorithm 41

ol 1 MUWU [
il
A
m -
g |
. ;
] See 1000 1560 2000 2368 Jee8 3308 4880
Generation
Fig. 5. Scheduled Change of X Value (MSHGA)
iee
40 4
: RIGA
,-.-.-\W AP AP A AP b *Wﬂizﬁj
28 SGA
g <] 388 ige8 1;“ 2088 25‘“ 3000 3580 4000

Generations

Fig. 6. Random Change of X Value

42 Bracewell D., Ren F.

refinement of candidate solutions. They are not able to handle the more rapid
changes in environment. The rapid change hinders their efforts to try and refine
good candidate solutions. The MSHGA, as with the scheduled change, is able to
use its memory mechanism to restart its search from its last best candidate. Also,
as before we can see that MSHGA has a steady trend of refining its answers.

If given enough time the MSHGA should steadily refine its candidate solutions
until they approach a fitness of 100.

3.2 The Non-Stationary Knapsack Problem

The knapsack problem is a much studied and examined problem. There has
also been work on using employing genetic algorithms to improve the overall
performance [4]. The basic form of the problem is given a set of items that have
associated weights and values and a knapsack that can carry a given weight,
maximize the value of the items in the knapsack without exceeding its weight
limit. The version of the knapsack problem we will use is called the 0/1 knapsack
problem. This version of the problem requires an item to either be completely
taken or not taken at all. Our experiments used a set of 20 items with weights
varying from 2 to 20 and values varying from 2 to 100. The weight that the
knapsack could carry was varied over time from 20% to 90% of the total weight
of the items in 10% increments. All the items were randomly generated and the
order of change in the knapsack’s weight limit was randomly chosen.

The population size was chosen to be 500 and each run consisted of 800
generations. 800 generations allows each of the 8 different knapsack weights to
be seen twice for the scheduled change test. A bit string of size 20 was used to
represent the knapsack. If a bit was “on” then the item was chosen to be in the
knapsack and if it was “off” it was not in the knapsack. For mutation a simple
bit flip operation was used. The mutation rate was 0.01. For crossover,uniform
crossover with a crossover rate of 0.8 was chosen. Tournament selection was again
used with a tournament size of 2 and a 98% chance that the most fit individual
would be chosen. The MSHGA parameters were chosen by experimentation,
where we tried to optimize the SGA for a stationary version of the 0/1 knapsack
problem.

In figures 7, 8, and 9 we can see the results for the scheduled change of
knapsack weight. The first thing we can see is that the SGA was unable to
recover from some of the changes in environments. This is caused by coming
from a problem landscape where the knapsack weight limit is high to one in
which it is low. The RIGA was better equipped to handle the problem thanks
to the influx of random individuals into the population. It was able to reach the
optimal weight after some effort for each environment. The MSHGA was also
able to reach the optimal weight. The advantage of the MSHGA is that once it
reached the optimal weight it never had work its way back to that answer. In a
situation where time is critical this would make a big difference as once we find
a good enough solution we would not have to do further computation.

In figure 10, we can see the results of all three GAs when the knapsack weight
is randomly changed. As with the x-max problem, we again sce that the SGA

A Memory and Search Hybrid Genetic Algorithm 43

1

Percentage Optinal
]

Fig. 7. Scheduled Change of Knapsack Weight (SGA)

Fig. 8. Scheduled Change of Knapsack Weight (RIGA)

44 Bracewell D., Ren F.

Percentage Optinal
L]

Fig. 9. Scheduled Change of Knapsack Weight (MSHGA)

100 | WSHGA 4
1/ oyl e ¥ f.""f-aM'(w"’f‘-‘,(‘,"m‘r-'-i..w-";a;ﬁw'ﬁ"v
1.
i
M, .
* SGA <
MNMMMWWM

Fig. 10. Random Change of Knapsack Weight

A Memory and Search Hybrid Genetic Algorithm 45

is not capable of decaling with the rapidly changing environment. However, it
performed better with the random change than it did with a scheduled change.
The reason for this is that the with a rapid change in environment the SGA’s
sclectional pressure was a bit a lower allowing a more diverse population. For the
knapsack problem this added diversity helped to keep solutions that had high
weights from dominating the population. The problem is that the SGA did not
know which optimum to go toward and instead settled on a suboptimal answer
somewhere in between. The RIGA performed well, but the extra effort of having
to regain the optimal answer each time caused its performance to be lower than
that of the MSHGA's. Over a longer duration the MSHGA will remain at 100%
optimal while the RIGA will probably stay around 90% optimal.

4 Conclusion and Future Work

In this paper the Memory Scarch Hybrid Genetic Algorithm was introduced. It
is designed to handle non-stationary environments that are repetitive in nature.
Through experimentation it was shown that the MSHGA outperforms both the
SGA and the RIGA in this task. The MSHGA is made up of a generational
GA with elitism, random immigrants, and an extra set of memory called the
candidate population.

The random immigrants part of the MSHGA is what keeps the population
diverse and drives the search when encountering new problem landscapes. The
candidate population is what ensures that the MSHGA does not have to waste
rebuilding candidate solutions to previously seen problem landscapes. This abil-
ity to recall is what allows the MSHGA to outperform the RIGA over time. Much
rescarch has been done for non-stationary environments, but as far as we know,
little to none has been done for non-stationary environments with repetitive
natures. It seems that in everyday tasks often the same problems are encoun-
tered time and time again. For this purpose the MSHGA was created. Over time
the MSHGA will be able to give instantaneous answers to problems that it has
previously seen. For typical genetic algorithms for designed for non-stationary
environments this would be a daunting task.

The candidate population and the ability to recall previously seen environ-
ment changes also points us in the direction of creating an always “on” MSHGA
that can be continuously fed new instances of a problem. For example, imagine a
system that must make choices based on external variables. If the external vari-
ables are finite in nature than over time the MSHGA can learn good solutions
for each sct of variables. It then can either bypass continued exploration and
return a candidate solution instantly or it can continue to work and refine on
the candidate solution. In essence the MSHGA memorizes answers to questions
and is able to instantly recall them in the future. This is partly what we hope
to look at in the future.

Also, we hope to look at not linking exact instances with candidate solutions,
but instead to link abstract settings to candidate solutions. We then may be able
to expand the MSHGA to handle many new situations. For example, in path

46 Bracewell D., Ren F.

finding instead of linking a grid of terrain to a candidate solution we could instcad
link general information about the environment. This may allow the MSHGA
to learn interesting information about the terrain and use this information for
unsecen terrain grids.

One final future application is to use the MSHGA to look at problem in
several different ways and then vote on a best solution overall. For example,
Part-of-Speech tagging, sce (1}, could be done using a combination of rule-based,
Hidden Markov Model, and other approaches. Each approach would simply b_e a
new environment for the MSHGA. At the end of the run of the MSHGA, a voting
mechanism would chose which candidate solution of the different techniques
should be the final answer. The hope is that information from the different
problem landscapes will be shared causing better solutions to be found.

There are many possibilitics that the MSHGA allots us. By changing out
the underlying generational GA we can tailor the MSHGA to the problem. The
MSHGA works as well as the RIGA in non-stationary environments. Howcv‘er‘
the MSHGA is more capable at dealing with non-stationary environments with
repetitive natures. In the future we hope to expand the experimentation of the
MSHGA to show off its ability at these types of problems.

References

1. E. Brill, “A Simple Rule-Based Part-of-Speech Tagger,” in Proceedings of 3rd Ap-
plied Natural Language Processing, 1992, 152-155.

2. H. Cobb, “An Investigation into the user of hypermutation as an adaptive °pefat°r
in genetic algorithms having continuous, time-dependent nonstationary environ-
ments,” U.S. Naval Laboratory Memorandum Report 6760, 1990. _

3. H. Cobb and J. Grefenstette, “Genetic Algorithms for Tracking Changing Environ-
ments,” in Proceedings of 5th ICGA, 5, 1993, 523-529.

4. C. Cotta and J.M. Troya, "A Hybrid Genetic Algorithm for the 0-1 Multiple Knap-
sack Problem,” Artificial Neural Nets and Genetic Algorithms 3, 1998, 251-255.

5. L. Davis (ed.), "Handbook of Genetic Algorithms,” Van Nostrand Reinhold Com-
puter Library, NY, 1991.

6. A. Ghosh, S. Tsutsui, and H. Tanaka, “Function Optimization in Nonstationary
Environment using Steady State Genetic Algorithms with Aging of Individuals,” in
IEEE International Conference on Evolutionary Computation, 1999, 666-671. ‘

7. D.E. Goldberg and R.E. Smith, “Nonstationary function optimization using genetic
algorithms with dominance and diploidy,” in International Conference on Genetic
Algorithms, 1987, 59-69.

8. J. Grefenstette, “Genetic Algorithms for Changing Environments,” in R. Maenner
and B. Manderick, editors, Parallel Problem Solving from Nature 2, North Holland,
1992, 137-144.

9. H. Kita and Y. Sano, “Genetic Algorithms for Optimization of Noisy Fitness Func-
tions and Adaption to Changing Environments,” in Statistical Mechanical Approach
to Probabilistic Information Processing, 2003.

10. N. Mori and H. Kita, “Genetic Algorithms for Adaptation to Dynamic Environ-
ments - A Survey,” in Proceedings of SEAL 2000, 2000, 2947-2952.

